Localized tissue mineralization regulated by bone remodelling: A computational approach
نویسندگان
چکیده
Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.
منابع مشابه
Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
In bone functional adaptation by remodelling, osteocytes in the lacuno-canalicular system are believed to play important roles in the mechanosensory system. Under dynamic loading, bone matrix deformation generates an interstitial fluid flow in the lacuno-canalicular system; this flow induces shear stress on the osteocytic process membrane that is known to stimulate the osteocytes. In this sense...
متن کاملPhospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones...
متن کاملPorosity of human mandibular condylar bone.
Quantification of porosity and degree of mineralization of bone facilitates a better understanding of the possible effects of adaptive bone remodelling and the possible consequences for its mechanical properties. The present study set out first to give a three-dimensional description of the cortical canalicular network in the human mandibular condyle, in order to obtain more information about t...
متن کاملInfliximab and the bone in Crohn's disease.
SIRS, In parallel to their use for Crohn's disease (CD), anti-tumour necrosis factor (TNF) therapies have become a powerful approach for the treatment of rheumatoid arthritis, psoriatic arthritis and ankylosing spondylarthropathy (SpA) and data are becoming available concerning the effects of anti-TNF on bone remodelling. Our paper clearly indicates that infliximab treatment is associated with ...
متن کاملExtracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins
Extracellular matrix mineralization (ECMM) is a physiologic process in the skeleton and in teeth and a pathologic one in other organs. The molecular mechanisms controlling ECMM are poorly understood. Inactivation of Matrix gla protein (Mgp) revealed that MGP is an inhibitor of ECMM. The fact that MGP is present in the general circulation raises the question of whether ECMM is regulated locally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017